Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMJ Open Respir Res ; 10(1)2023 02.
Article in English | MEDLINE | ID: covidwho-2223677

ABSTRACT

INTRODUCTION: We compared the population rate of COVID-19 and influenza hospitalisations by age, COVID-19 vaccine status and pandemic phase, which was lacking in other studies. METHOD: We conducted a population-based study using hospital data from the province of British Columbia (population 5.3 million) in Canada with universal healthcare coverage. We created two cohorts of COVID-19 hospitalisations based on date of admission: annual cohort (March 2020 to February 2021) and peak cohort (Omicron era; first 10 weeks of 2022). For comparison, we created influenza annual and peak cohorts using three historical periods years to capture varying severity and circulating strains: 2009/2010, 2015/2016 and 2016/2017. We estimated hospitalisation rates per 100 000 population. RESULTS: COVID-19 and influenza hospitalisation rates by age group were 'J' shaped. The population rate of COVID-19 hospital admissions in the annual cohort (mostly unvaccinated; public health restrictions in place) was significantly higher than influenza among individuals aged 30-69 years, and comparable to the severe influenza year (2016/2017) among 70+. In the peak COVID-19 cohort (mostly vaccinated; few restrictions in place), the hospitalisation rate was comparable with influenza 2016/2017 in all age groups, although rates among the unvaccinated population were still higher than influenza among 18+. Among people aged 5-17 years, COVID-19 hospitalisation rates were lower than/comparable to influenza years in both cohorts. The COVID-19 hospitalisation rate among 0-4 years old, during Omicron, was higher than influenza 2015/2016 and 2016/2017 and lower than 2009/2010 pandemic. CONCLUSIONS: During first Omicron wave, COVID-19 hospitalisation rates were significantly higher than historical influenza hospitalisation rates for unvaccinated adults but were comparable to influenza for vaccinated adults. For children, in the context of high infection levels, hospitalisation rates for COVID-19 were lower than 2009/2010 H1N1 influenza and comparable (higher for 0-4) to non-pandemic years, regardless of the vaccine status.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Child , Humans , Infant, Newborn , Infant , Child, Preschool , Influenza, Human/epidemiology , Influenza, Human/prevention & control , British Columbia/epidemiology , COVID-19 Vaccines , COVID-19/epidemiology , Hospitalization
2.
Clin Infect Dis ; 75(11): 1980-1992, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-1927303

ABSTRACT

BACKGROUND: The Canadian coronavirus disease 2019 (COVID-19) immunization strategy deferred second doses and allowed mixed schedules. We compared 2-dose vaccine effectiveness (VE) by vaccine type (mRNA and/or ChAdOx1), interval between doses, and time since second dose in 2 of Canada's larger provinces. METHODS: Two-dose VE against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or hospitalization among adults ≥18 years, including due to Alpha, Gamma, and Delta variants of concern (VOCs), was assessed ≥14 days postvaccination by test-negative design studies separately conducted in British Columbia and Quebec, Canada, between 30 May and 27 November (epi-weeks 22-47) 2021. RESULTS: In both provinces, all homologous or heterologous mRNA and/or ChAdOx1 2-dose schedules were associated with ≥90% reduction in SARS-CoV-2 hospitalization risk for ≥7 months. With slight decline from a peak of >90%, VE against infection was ≥80% for ≥6 months following homologous mRNA vaccination, lower by ∼10% when both doses were ChAdOx1 but comparably high following heterologous ChAdOx1 + mRNA receipt. Findings were similar by age group, sex, and VOC. VE was significantly higher with longer 7-8-week versus manufacturer-specified 3-4-week intervals between mRNA doses. CONCLUSIONS: Two doses of any mRNA and/or ChAdOx1 combination gave substantial and sustained protection against SARS-CoV-2 hospitalization, spanning Delta-dominant circulation. ChAdOx1 VE against infection was improved by heterologous mRNA series completion. A 7-8-week interval between first and second doses improved mRNA VE and may be the optimal schedule outside periods of intense epidemic surge. Findings support interchangeability and extended intervals between SARS-CoV-2 vaccine doses, with potential global implications for low-coverage areas and, going forward, for children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , British Columbia/epidemiology , Quebec/epidemiology , COVID-19 Vaccines , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , RNA, Messenger
3.
J Infect Dis ; 226(1): 485-496, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1746883

ABSTRACT

BACKGROUND: In British Columbia, Canada, most adults 50-69 years old became eligible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in April 2021, with chimpanzee adenoviral vectored vaccine (ChAdOx1) restricted to ≥55-year-olds and second doses deferred ≥6 weeks to optimize single-dose coverage. METHODS: Among adults 50-69 years old, single-dose messenger RNA (mRNA) and ChAdOx1 vaccine effectiveness (VE) against SARS-CoV-2 infection and hospitalization, including variant-specific, was assessed by test-negative design between 4 April and 2 October 2021. RESULTS: Single-dose VE included 11 861 cases and 99 544 controls. Median of postvaccination follow-up was 32 days (interquartile range, 15-52 days). Alpha, Gamma, and Delta variants comprised 23%, 18%, and 56%, respectively, of genetically characterized viruses. At 21-55 days postvaccination, single-dose mRNA and ChAdOx1 VE (95% confidence interval [CI]) was 74% (71%-76%) and 59% (53%-65%) against any infection and 86% (80%-90%) and 94% (85%-97%) against hospitalization, respectively. VE (95% CI) was similar against Alpha and Gamma infections for mRNA (80% [76%-84%] and 80% [75%-84%], respectively) and ChAdOx1 (69% [60%-76%] and 66% [56%-73%], respectively). mRNA VE was lower at 63% (95% CI, 56%-69%) against Delta but 85% (95% CI, 71%-92%) against Delta-associated hospitalization (nonestimable for ChAdOx1). CONCLUSIONS: A single mRNA or ChAdOx1 vaccine dose gave important protection against SARS-CoV-2, including early variants of concern. ChAdOx1 VE was lower against infection, but 1 dose of either vaccine reduced the hospitalization risk by >85% to at least 8 weeks postvaccination. Findings inform program options, including longer dosing intervals.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , British Columbia/epidemiology , COVID-19/prevention & control , Humans , Middle Aged , RNA, Messenger , SARS-CoV-2/genetics , Vaccine Efficacy
4.
Clin Infect Dis ; 74(7): 1158-1165, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1700948

ABSTRACT

BACKGROUND: Randomized-controlled trials of messenger RNA (mRNA) vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) included relatively few elderly participants. We assess single-dose mRNA vaccine effectiveness (VE) in adults ≥ 70 years old in British Columbia, Canada, where second doses were deferred by up to 16 weeks and where a spring 2021 wave uniquely included codominant circulation of Alpha (B.1.1.7) and Gamma (P.1) variants of concern (VOC). METHODS: Analyses included community-dwelling adults ≥ 70 years old with specimen collection between 4 April (epidemiological week 14) and 1 May (week 17) 2021. Adjusted VE was estimated by test-negative design. Cases were reverse-transcription polymerase chain reaction (RT-PCR) test-positive for SARS-CoV-2, and controls were test-negative. Vaccine status was defined by receipt of a single-dose ≥ 21 days before specimen collection, but a range of intervals was assessed. Variant-specific VE was estimated against viruses genetically characterized as Alpha, Gamma or non-VOC lineages. RESULTS: VE analyses included 16 993 specimens: 1226 (7%) test-positive cases and 15 767 test-negative controls. Of 1131 (92%) genetically characterized viruses, 509 (45%), 314 (28%), and 276 (24%) were Alpha, Gamma, and non-VOC lineages, respectively. At 0-13 days postvaccination, VE was negligible at 14% (95% confidence interval [CI], 0-26) but increased from 43% (95% CI, 30-53) at 14-20 days to 75% (95% CI, 63-83) at 35-41 days postvaccination. VE at ≥ 21 days postvaccination was 65% (95% CI, 58-71) overall: 72% (95% CI, 58-81), 67% (95% CI, 57-75), and 61% (95% CI, 45-72) for non-VOC, Alpha, and Gamma variants, respectively. CONCLUSIONS: A single dose of mRNA vaccine reduced the risk of SARS-CoV-2 by about two-thirds in adults ≥ 70 years old, with protection only minimally reduced against Alpha and Gamma variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Aged , British Columbia/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL